推进技术 ›› 2019, Vol. 40 ›› Issue (10): 2226-2234.DOI: 10.13675/j.cnki. tjjs. 180684

• 气动热力学 • 上一篇    下一篇

唇罩内型面对内转式进气道流动特性影响研究

朱婷1,王卫星1,张仁涛1,李宥晨1   

  1. 南京航空航天大学 能源与动力学院,江苏省航空动力系统重点实验室
  • 发布日期:2021-08-15
  • 作者简介:朱 婷,硕士生,研究领域为内流空气动力学。E-mail:931510060@qq.com
  • 基金资助:
    国家自然科学基金青年基金 11502111国家自然科学基金青年基金(11502111)。

Effects of Internal Surface of Cowl on FlowCharacteristics of Inward Turning Inlet

  1. Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Published:2021-08-15

摘要: 内转式进气道流场参数分布不均,为改善进气道的流场结构、提高其气动性能,采用数值仿真方法开展了唇罩内型面对内转式进气道流动特性影响的研究。研究结果表明:唇罩内型面影响唇罩激波强度、形态与内流道波系结构,进而影响唇罩激波与侧壁边界层干扰诱发的三维流向涡的产生、发展以及空间分布;在研究范围内,随着唇罩压缩角减小,唇罩激波减弱,内转式进气道流场参数周向分布更加均匀,出口总压恢复系数先增大后减小,抗反压能力不断增强,最高增大了12.7%。

关键词: 内转式进气道;流场控制;激波/边界层干扰;流向涡;气动性能;数值仿真

Abstract: The distribution of flow-field parameters of inward turning inlet are uneven. In order to improve the flow field structure of inward turning inlet and its aerodynamic performances , the numerical simulation method was employed to study the effects of the internal surface of cowl on the distribution of flow field parameters and aerodynamic performances. The results show that the internal surface of cowl influences the shock intensity, shape and the internal wave structure. The shock intensity and shape of cowl influence the generation, development and spatial distribution of the three-dimensional flow vortex deeply induced by the interaction between the cowl shock and the boundary layer near the sidewall. Within the scope of study, as the compression angle of cowl decreasing, the cowl shock is weakened and the circumferential distribution of the flow parameters becomes more uniform, the total pressure recovery coefficient increases firstly and then decreases, the capability of back pressure resistance is strengthened, the highest growth rate is 12.7%.

Key words: Inward turning inlet;Flow control;Shock/boundary layer interaction;Streamwise vortex;Aerodynamic performance;Numerical simulation